Crystal Structure
Communications

## ( $\boldsymbol{\eta}^{5}$-Cyclopentadienyl)( $\boldsymbol{p}$-fluoro-phenoxo)(nitrosyl)(trimethylsilylmethyl)molybdenum(II)

Trevor W. Hayton, Peter Legzdins* and Steven J. Rettig†

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
Correspondence e-mail: legzdins@chem.ubc.ca

Received 24 August 2001
Accepted 13 November 2001
Online 16 January 2002
The title complex, $\left[\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{FO}\right)\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{Si}\right)(\mathrm{NO})\right]$, is formed by reacting $\mathrm{CpMo}(\mathrm{NO})\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}$, where Cp is cyclopentadienyl, with one equivalent of $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OH}$. The complex exhibits the expected piano-stool molecular structure, with a linear nitrosyl ligand [ $\mathrm{Mo}-\mathrm{N}-\mathrm{O} 168.2$ (2) ${ }^{\circ}$ ] having $\mathrm{Mo}-\mathrm{N}$ and $\mathrm{N}-\mathrm{O}$ distances of 1.764 (2) and 1.207 (3) $\AA$, respectively. The phenoxo Mo-O distance of 1.945 (2) $\AA$ is suggestive of some multiple-bond character.

## Comment

Many attempts to generate molybdenum- and tungstenalkoxo complexes in our laboratories have been unsuccessful. The standard metathetical protocol, using a metal-halide precursor with an alkali metal-alkoxide salt, often results in either decomposition or the formation of $\mathrm{N}-\mathrm{O}$ bond-cleavage products (Legzdins et al., 1996). An alternate procedure, namely protonation of the alkyl ligand in $\mathrm{CpMo}(\mathrm{NO})$ $\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}$ by an alcohol to generate the corresponding alkoxo complex and $\mathrm{SiMe}_{4}$, has now been found to generate a variety of new complexes in good yield. The title compound, $\mathrm{CpMo}(\mathrm{NO})\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{O}\right)$, (I) (Fig. 1), has been synthesized by this method.

(I)

Compound (I) exhibits a pseudo-tetrahedral geometry around the Mo atom typical of this class of three-legged pianostool molecules. The Mo-N-O linkage is linear [Mo1-N1O1 $168.2(2)^{\circ}$ ], with a short Mo1-N1 distance $[1.764(2) \AA]$

[^0]

Figure 1
The molecular structure of (I) showing $50 \%$ probability ellipsoids. H atoms have been omitted for clarity.
and a long $\mathrm{N}-\mathrm{O}$ distance [1.207 (3) $\AA$ ], relative to most other nitrosyls (Feltham \& Enemark, 1981). This indicates that the nitrosyl ligand is strongly involved in $\pi$-back-bonding with the Mo centre. The phenoxo Mo-O distance is 1.945 (2) $\AA$, significantly longer than the $\mathrm{W}-\mathrm{O}$ distances in the related complexes $\mathrm{Cp} * \mathrm{~W}(\mathrm{NO})\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)_{2}[1.910(4) \AA]$ and $\mathrm{Cp}{ }^{*}$ $\mathrm{W}(\mathrm{NO})\left(\mathrm{OCMe}_{3}\right)_{2} \quad\left[\mathrm{Cp}^{*}\right.$ is pentamethylcyclopentadienyl; 1.890 (5) and 1.903 (5) $\AA$; Legzdins et al., 1993], where the metal-oxygen bond has definite multiple-bond character. However, the phenoxo Mo-O distance is shorter than the $\mathrm{W}-\mathrm{O}$ bonds in $\mathrm{Cp} * \mathrm{~W}(\mathrm{NO})(\mathrm{OMe})\left[\eta^{2}-\mathrm{O}=\mathrm{C}\right.$ $(\mathrm{Me}) \mathrm{CH}=\mathrm{CPh}]\left[2.001(7) \AA\right.$; Legzdins et al., 1998] and $\mathrm{Cp}{ }^{*}$ $\mathrm{W}(\mathrm{NO})\left(\mathrm{OCMe}_{3}\right)\left[\eta^{2}-\mathrm{N}\left(\mathrm{CMe}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)\right] \quad[1.978$ (4) $\AA$; Legzdins et al., 1994]. The W-O bonds in these two compounds, by the nature of the $\eta^{2}$-bound co-ligands, are single bonds, which then suggests that the Mo-O link in (I) is somewhat more than a single bond. Comparison with other W and Mo complexes, namely $\mathrm{Cp} * \mathrm{~W}(\mathrm{MeCCMe})_{2}(\mathrm{OPh})[\mathrm{W}-\mathrm{O}$ 2.072 (7) Å; O'Regan et al., 1992], $\left[\mathrm{Cp} * \mathrm{~W}\left(\mathrm{Me}_{2}\right)_{2}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)\right]_{2}(\mu-$ $\mathrm{N}_{2}$ ) [W-O 2.079 (8) $\AA$; O'Regan et al., 1990], and [ $\mathrm{Mo}_{2}{ }^{-}$ ( $\left.\mathrm{OPh}-4-\mathrm{Me})_{7}\left(\mathrm{Me}_{2} \mathrm{NH}\right)_{2}\right]^{-}\left[\mathrm{Mo}-\mathrm{O}_{\text {terminal }} 2.03 \AA\right.$ (average); Coffindaffer et al., 1985], further supports this assumption.

## Experimental

In a Schlenk tube, under anaerobic and anhydrous conditions, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{NO})\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ was combined with $p$-fluorophenol ( $31 \mathrm{mg}, 0.27 \mathrm{mmol}$ ), and the mixture was dissolved in tetrahydrofuran (THF, 20 ml ). The resulting purple solution was stirred for 3 d at room temperature, whereupon it became deep red. The THF was removed in vacuo, and the resulting red oil was dissolved in hexanes $(30 \mathrm{ml})$ and filtered through a column of celite $(2 \times 2 \mathrm{~cm})$. The volume of this filtrate was reduced to 4 ml , and it was then cooled to 243 K overnight to induce the deposition of (I) as a dark-red powder ( $64 \mathrm{mg}, 60 \%$ yield). X-ray quality crystals were grown from a concentrated hexanes solution at 243 K over a period of several weeks. IR (Nujol): $1635 \mathrm{~cm}^{-1}\left(v_{\mathrm{NO}}\right) .{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.81\left(t, 2 \mathrm{H}, \mathrm{C}-\mathrm{H}_{m}\right), 7.02\left(d d, 2 \mathrm{H}, \mathrm{C}-\mathrm{H}_{o}\right), 5.19$ $\left(s, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.48\left(d, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right), 1.97\left(d, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right), 0.17$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{Mo} 1-\mathrm{O} 2$ | 1.945 (2) | Mo1-C4 | 2.405 (3) |
| :---: | :---: | :---: | :---: |
| Mo1-N1 | 1.764 (2) | Mo1-C5 | 2.333 (3) |
| Mo1-C1 | 2.288 (3) | Mo1-C12 | 2.133 (3) |
| Mo1-C2 | 2.386 (3) | N1-O1 | 1.207 (3) |
| Mo1-C3 | 2.443 (3) |  |  |
| $\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{N} 1$ | 100.84 (9) | Mo1-O2-C6 | 128.5 (2) |
| $\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{C} 12$ | 107.86 (9) | Mo1-N1-O1 | 168.2 (2) |
| N1-Mo1-C12 | 96.0 (1) | Mo1-C12-Si1 | 129.2 (1) |

$\left(s, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ( $200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ): $\delta 118.6(\mathrm{C}-\mathrm{F}), 116.1$ $\left(\mathrm{C}-\mathrm{H}_{o}\right), 115.6\left(\mathrm{C}-\mathrm{H}_{m}\right), 104.7\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 49.3\left(\mathrm{CH}_{2} \mathrm{Si}\right), 1.93\left(\mathrm{SiCH}_{3}\right)$.

## Crystal data

$\left[\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{FO}\right)-\right.$

$$
\left.\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{Si}\right)(\mathrm{NO})\right]
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.517 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4985 \\
& \quad \text { reflections } \\
& \theta=3.1-27.9^{\circ} \\
& \mu=0.85 \mathrm{~mm}^{-1} \\
& T=180.2 \mathrm{~K} \\
& \text { Irregular, red } \\
& 0.25 \times 0.20 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=389.35$
Triclinic, $P \overline{1}$
$a=7.0052$ (7) A
$b=9.0510(9) \AA$
$c=14.021$ (2) $\AA$
$\alpha=103.510(5)^{\circ}$
$\beta=98.776(5)^{\circ}$
$\gamma=91.830(4)^{\circ}$
$V=852.2(1) \AA^{3}$

## Data collection

Rigaku/ADSC CCD diffractometer $\varphi$ and $\omega$ scans
Absorption correction: multi-scan ( $d$ *TREK; Molecular Structure Corporation, 1996-1998)
$T_{\text {min }}=0.71, T_{\text {max }}=0.95$
7376 measured reflections

## Refinement

Refinement on $F^{2}$
$R(F)=0.029$
$w R\left(F^{2}\right)=0.072$
$S=0.86$
3422 reflections
190 parameters

The absorption correction was based on a three-dimensional analysis of symmetry-equivalent data and was performed along with batch scaling in a single step. The resulting transmission factors, therefore, include contributions from absorption, crystal decay, and detectable variations in beam intensity. The $\mathrm{C}-\mathrm{H}$ distances are 0.98 Å.

Data collection: $d^{*} T R E K$ (Molecular Structure Corporation, 1996-1998); cell refinement: $d^{*} T R E K$; data reduction: $d^{*} T R E K$; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1992-1997); software used to prepare material for publication: TEXSAN.

The authors thank NSERC and UBC for funding. They also thank Drs W. B. Sharp and B. O. Patrick for helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1210). Services for accessing these data are described at the back of the journal.

## References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Coffindaffer, T. W., Niccolai, G. P., Powell, D., Rothwell, I. P. \& Huffman, J. C. (1985). J. Am. Chem. Soc. 107, 3572-3583.

Feltham, R. D. \& Enemark, J. H. (1981). Top. Stereochem. 12, 155-215.
Legzdins, P., Lumb, S. A. \& Young, V. G. Jr (1998). Organometallics, 17, 854 871.

Legzdins, P., Lundmark, P. J. \& Rettig, S. J. (1993). Organometallics, 12, 35453552.

Legzdins, P., Lundmark, P. J. \& Rettig, S. J. (1996). Organometallics, 15, 29882993.

Legzdins, P., Rettig, S. J. \& Ross, K. J. (1994). Organometallics, 13, 569-577.
Molecular Structure Corporation (1996-1998). $d^{*}$ TREK. Version 4.13. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992-1997). TEXSAN. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
O’Regan, M. B., Liu, A. H., Finch, W. C., Schrock, R. R. \& Davis, W. M. (1990). J. Am. Chem. Soc. 112, 4331-4338.

O'Regan, M. B., Vale, M. G., Payack, J. F. \& Schrock, R. R. (1992). Inorg. Chem. 31, 1112-1115.


[^0]:    $\dagger$ Deceased October 27, 1998.

